
J. Fluid Mech. (2008), vol. 617, pp. 301–326. c© 2008 Cambridge University Press

doi:10.1017/S0022112008004278 Printed in the United Kingdom

301

Stability analysis of stratified shear flows
with a monotonic velocity profile without
inflection points. Part 2. Continuous

density variation

S. M. CHURILOV†
Institute of Solar–Terrestrial Physics (ISTP), Siberian Department of Russian Academy of Sciences,

Irkutsk 33, PO Box 291, 664033, Russia

(Received 25 December 2006 and in revised form 4 September 2008)

We investigate stability with respect to two-dimensional (independent of z) distur-
bances of plane-parallel shear flows with a velocity profile Vx = u(y) of a rather
general form, monotonically growing upwards from zero at the bottom (y =0) to
U0 as y → ∞ and having no inflection points, in an ideal incompressible fluid stably
stratified in density in a layer of thickness �, small as compared to the scale L of
velocity variation. In terms of the ‘wavenumber k – bulk Richardson number J ’
variables, the upper and lower (in J ) boundaries of instability domains are found
for each oscillation mode. It is shown that the total instability domain has a lower
boundary which is convex downwards and is separated from the abscissa (k) axis by
a strip of stability 0 <J <J

(−)
0 (k) with minimum width J∗ = O(�2/L2) at kL = O(1).

In other words, the instability domain configuration is such that three-dimensional
(oblique) disturbances are first to lose their stability when the density difference across
the layer increases. Hence, in the class of flows under consideration, it is a three- not
two-dimensional turbulence that develops as a result of primary instability.

1. Introduction
Vertical density stratification plays an important role in the dynamics of geophysical

flows; in particular, it usually has a determining influence on their stability. On the
other hand, stratification combined with velocity shear makes theoretical analysis of
stability an extremely difficult problem. In such a situation, of particular interest are
those special properties of flows that simplify the task of a researcher. For instance,
in high-Prandtl-number media (for example, in sea water) changes in density occur,
as a rule, sharply, in thin transitional layers outside of which the density is almost
constant (e.g. Turner 1973). Owing to this, characteristic scales of velocity (L) and
density (�) variations in flows of such media appear to be essentially different, � � L,
and this fact is actually equivalent to separation in space of the effects of stratification
and velocity shear. In a narrow layer where stratification is strong, the velocity shear
can be treated as a correction, and at the same time outside of this layer the flow
may be considered as approximately homogeneous, taking stratification into account
as a small perturbation.
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Figure 1. Stability diagram for a two-layer flow (�= 0; u(y) = 1 − e−y , yN = 0.5).

Churilov (2004, 2005), proposed a method of investigation of such flows at high
Reynolds numbers based on a semi-qualitative solution of the Taylor–Goldstein
equation using well-known properties of solutions of the Rayleigh equation. In the
context of the method, a conclusion about flow stability (or instability) is dictated by
the presence or absence of some fairly general features of the flow and consequently
holds true for a wide enough class of flows. First of all, the method was used for
stability analysis of flows with inflection-free velocity profiles because the properties
of solutions of the Rayleigh equation are simplest in this case.

Such flows are stable in a homogeneous medium (according to Rayleigh’s theorem,
see, for example, Turner 1973; Dikii 1976; Drazin & Reid 1981), but may lose
their stability in stratified media. Chimonas (1974) appears to be the first to argue
thoroughly for this possibility, and the instability itself was found numerically by
Fua, Einaudi & Lalas (1976) for an atmospheric boundary-layer flow with � = O(L).
The stability of flows belonging to this class was also studied later (see, for example,
Redekopp 2001).

Churilov (2004, 2005) considered a similar problem in the limit � → 0, i.e. in a
two-layer medium with density ρ(y) = {ρ1, 0 � y < yN ; ρ2, yN <y < ∞} where ρ2 <ρ1.
He studied the stability of plane-parallel flows in the gravity field g, with an arbitrary
inflection–free velocity profile vx = u(y) that monotonically increases upwards from
zero at the bottom (y = 0) to some finite value U0 as y → ∞. It was found that such
flows lose stability at an arbitrarily small density difference and remain unstable for
any ρ1/ρ2 > 1. Moreover, in the general case (when u′′ ≡ d2u/dy2 < 0 everywhere)
the instability domain configuration on the ‘ dimensionless wavenumber kL – the
bulk Richardson number J = (gL/U0

2) ln(ρ1/ρ2)’ plane appears to be universal (see
figure 1). (Hereinafter, we shall use dimensionless variables scaled by L, U0 and ρ1.)
Dispersion curve J = J1(k) of waves propagating with limiting velocity of the flow
(c = 1) separates stable and unstable perturbation domains: the region of neutrally
stable oscillations overtaking the flow (c > 1) is located above it, whereas the strip
0 < J < J1(k) is filled by unstable oscillations with cr ≡ Re c increasing from uN ≡
u(yN ) at J = 0 to 1 at J = J1(k).
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When � =0, the role of stratification is minimal: it appears only in the condition
of matching the solutions of the Rayleigh equation at the interface. For this reason,
many interesting and important features due to stratification remain beyond our
scope and, when applied to real flows, the results of such a stability analysis should
be considered as a first approximation. The objective of this paper is to investigate the
stability of the same class of flows in the case where the density decreases continuously
and monotonically from ρ1 to ρ2 in a transitional layer of small, but finite, thickness
� which is centred at y = yN . Let us try to conceive what spectrum should be expected
in this case.

As stratification is strongly localized, in the bulk of the flow (where |y − yN | 	 �)
disturbances obey, in fact, the Rayleigh equation. In this case, there are no waves
running to infinity in y, and the flow can be regarded as a waveguide, and its
eigenoscillations as guided waves, with sinusoidal horizontal and modal vertical
structure. When u′′(y) 
= 0 everywhere, solutions of the Rayleigh equation are known
to have no more than one zero (see, for example, Dikii 1976; Drazin & Reid 1981),
and this zero is at the bottom (y = 0) in the lower (nearly) homogeneous layer or at
the infinity in the upper one. That is why, at � = 0, eigenoscillations have no nodes
in y.

When 0 <� � 1, the waveguide also has nodeless eigenoscillations. In addition,
there should be eigenmodes with nodes in y as well, but all these nodes must be
located inside the stratified (transitional) layer. We shall show that for � 
= 0, the
physical nature of stability boundaries remains the same as it is at � = 0. Recall
that, according to Howard’s (1961) semicircle theorem (see also Turner 1973; Dikii
1976; Drazin & Reid 1981; Timofeev 2000), each unstable perturbation is in phase
resonance with the flow at a critical level y = yc determined by the condition that the
real part of the phase velocity, cr , coincides with the flow velocity, cr = u(yc). As J

increases, cr grows, the critical level is gradually displaced toward the flow periphery
and disappears when c � 1 because the perturbation is no longer in resonance with
the flow. Hence, the dispersion curve J = Jm(k; 1) of neutral oscillations belonging
to the mth mode and having phase velocity c =1 is the upper boundary of the
corresponding instability domain. On the other hand, as J decreases, the critical
level moves towards the region of strong stratification, and when it ‘intrudes’ into
this region the oscillation becomes stable at some J = J (−)

m (k) > 0. This is the lower
boundary of the mth instability domain.

Thus, when � 
= 0 there should be a denumerable set of eigenmodes (numerated
by m) with similar spectra (stability diagrams). The stability diagram of the nodeless
(m = 0) mode should be almost the same as for � = 0 (see figure 1), differing only by
the stability strip 0 <J <J (−)

m (k) in the lower part. The other diagrams (with m > 0)
can be made from it, roughly speaking, by stretching m2/� times in J . For example,
let us consider eigenoscillations with c = 1 (lying on the upper boundaries of insta-
bility domains). When m =0, they obey the dispersion relation J = J0(k; 1) ≈
J1(k) = O(1). If, however, the eigenfunction has m nodes (located inside the transitional
layer), it can be easily seen from the Taylor–Goldstein equation, (2.3) below,
that

Jm(k; 1) n(y)

(1 − uN )2
�2 = O(m2) or Jm(k; 1) = O(m2/�),

where uN = u(yN ) (note that n(y) = O(�−1), see (2.1)).
We shall see that this rough reasoning is quite realistic and can be supported

by mathematically consistent consideration of the problem. However, a part of this
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consideration, namely, calculating the lower boundaries J = J (−)
m (k) of instability

domains, requires a rather complicated and refined analysis. For this reason, the
paper is organized as follows. The mathematical statement of the problem, as well as
model velocity and density profiles used for illustrative calculations (equation (2.5)),
are given in § 2. In the following two sections we outline all the key points, formulae
and results of the stability analysis leaving detailed mathematics for the Appendices
(available as a supplement to the online version of the paper). And in § 5 the basic
results are formulated and discussed.

2. Statement of the problem
We consider a steady-state plane-parallel flow of ideal stably stratified incom-

pressible fluid in the half-space y � 0. Its velocity grows monotonically from zero at
y = 0 to 1 as y → ∞, so that (the prime denotes the derivative in y)

u(0) = 0, u′(0) = 1, lim
y→∞

u(y) = 1; u′(y) > 0, u′′(y) < 0.

In the Boussinesq approximation, the stratification appears in equations via the
squared Brunt–Väisälä frequency which can be written in the form

Ω2(y) ≡ −g

ρ

dρ

dy
= J n(y), n(y) =

d

dy

(
ln ρ

ln ρ2

)
� 0,

where J is the previously introduced bulk Richardson number and, obviously,∫ ∞

0

dy n(y) = 1. (2.1)

We assume that the function n(y) is localized in a layer of thickness � � 1 with the
centre at

yN =

∫ ∞

0

dy y n(y), (2.2)

has a single maximum, and rapidly (at least, exponentially) tends to zero outside the
layer. The layer is located in such a manner that the flow velocity inside it, uN , is
close to neither zero nor unity.

The spectral stability of the flow is investigated with respect to two-dimensional
perturbations described in terms of the streamfunction ψ (vx = u(y) + ∂ψ/∂y, vy =
−∂ψ/∂x). In the linear approximation, ψ = g(y) exp(−iωt + ikx) satisfies the Taylor–
Goldstein equation (see, for example, Turner 1973; Dikii 1976; Drazin & Reid 1981)
with boundary conditions at y = 0 and y → ∞:

d2g

dy2
+

[
J n(y)

(u − c)2
− u′′

u − c
− k2

]
g = 0; g(0) = 0, |g(∞)| < ∞. (2.3)

The problem consists in finding the (generally complex) eigenvalues of the phase
velocity,

ω

k
= c(k, J ) ≡ cr (k, J ) + i ci(k, J ),

and boundaries of the instability domain. (Any of the numbers J , k and c (at given
values of two others) can be treated as an eigenvalue, but only c can take complex
values, and in this case it is more convenient to search for c at given J and k.)

Since the stratification is strongly localized, it is convenient to divide the flow into
the inner (|y − yN | =O(�)) region containing the transitional layer with significant
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changes in density, and the outer (|y −yN | 	 �) regions with nearly constant densities,
to solve (2.3) separately in these regions and then to match the solutions in domains
� � |y−yN | � 1, where they overlap, using the multiple scale method (see, for example,
Nayfeh 1973). For this purpose, we introduce the inner variable Y and the function
N(Y ) = � n(y) which satisfy the relations (compare with (2.1) and (2.2))

y − yN = �Y ;

∫ ∞

−∞
dY N(Y ) = 1,

∫ ∞

−∞
dY Y N(Y ) = 0, (2.4)

(the last two are accurate to exponentially small terms because the lower limit in
integrals is actually equal to −yN/�).

The Taylor–Goldstein equation (2.3) has a singularity at the critical level y = yc. For
this reason, the presence (or absence) and position of the critical level are both very
important for our problem, and its position with respect to the stratified (transitional)
layer is the most essential. If there is no critical level or it is located outside of the
transitional layer (|yc −yN | 	 �) the equation (2.3) has no singularity in the layer, and
we have a rather simple regular inner problem (RIP) considered in § 3. Otherwise, we
are confronted with a much more difficult singular inner problem (SIP) which will be
analysed in § 4.

We shall illustrate our analysis using the results of calculations for a model flow

u(y) = 1 − exp(−y), n(y) =
1

�
√

π
exp

[
− (y − yN )2

�2

]
, (2.5)

with � = 0.01 and yN =0.5. The same calculations were also done for the flow

u(y) = tanh(y), n(y) =
[
2� cosh2

(y − yN

�

)]−1

,

and very similar results were obtained. (We use a fourth-order Runge–Kutta method
for integrating differential equations, shooting when searching for eigenvalues, and
Simpson’s formula for integrals.)

3. Regular inner problem
3.1. General consideration and ‘fast’ (c � 1) neutral waves

First of all, we turn to oscillations overtaking the flow and hence having no critical
level. At fixed c � 1 and k � 0, the problem (2.3) is a Schrödinger (or Sturm–Liouville)
eigenvalue problem: the eigenvalues J should be found for which there is a level with
‘energy’ E = − k2 in the potential well

V (y) = − J n(y)

[c − u(y)]2
− u′′(y)

c − u(y)
,

bounded on the left (at y = 0) by a reflecting wall. The characteristic width of the
well is equal to the thickness of the stratified layer �, and its depth is proportional
to J , therefore, the number of eigenvalues is not limited and, as would be expected,
they form a denumerable set: J = Jm(k; c), m =0, 1, 2, . . . . To have a more detailed
picture, let us consider the outer and the inner problems separately and then match
their solutions.

In outer regions, (2.3) reduces to the Rayleigh equation with exponentially small
corrections for stratification. Its solutions above (g+) and below (g−) the transitional
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layer (each obeying the proper boundary condition, see (2.3)) can be represented (as
y → yN ) in the form of series in � (hereinafter, notations fN = f (yN ) and fc = f (yc)
are used):

g±(y) = g± N + g′
± N (y − yN ) + · · · = g± N + �g′

± N Y + O(�2Y 2), (3.1)

where (g′
N/gN )± depend on k and c.

Passing in (2.3) to the variable Y (see (2.4)) yields, up to terms of O(�2) inclusive,

d2g

dY 2
+

{
R N(Y )

[
1 +

2�u′
NY

c − uN

+ �2

(
u′′

N

c − uN

+
3u′2

N

(c − uN )2

)
Y 2

]

+ �2

(
u′′

N

c − uN

− k2

)}
g = 0, (3.2)

where

R =
�J

(c − uN )2
or J = �−1R (c − uN )2. (3.3)

This is the equation of RIP, and the density stratification is of first importance in
it, whereas the velocity shear is considered as a correction. The solution of (3.2) is
sought in the form of expansion in �,

g(Y ) = g(0)(Y ) + �g(1)(Y ) + �2g(2)(Y ) + · · · , R = R(0) + �R(1) + �2R(2) + · · · . (3.4)

To obtain the dispersion relation c = c(k, J ), we should calculate asymptotic ex-
pansions of the inner solution g(Y ) as Y → ±∞ and match them to (3.1) when
1 � |Y | � �−1 for each order in �.

If perturbations are not too short-wavelength (k� � 1), equation (3.2) at O(1)
is reduced to the problem (boundary conditions are due to the fact that at O(1),
g±(y) = g± N = const in (3.1))

d2g(0)

dY 2
+ R(0) N(Y ) g(0) = 0, lim

Y→±∞

dg(0)

dY
= 0 (3.5)

of zero energy levels in a potential well V0(Y ) = − R(0) N(Y ) (the existence of such
levels is guaranteed by a fast enough tending of N(Y ) to zero as Y → ±∞, see,
for example Calogero 1967) the depth of which is regulated by the parameter R(0).
Evidently, the problem (3.5) has a denumerable set of eigenvalues R(0)

m . Note that

R
(0)
0 = 0 for any N(Y ) so that R0 = �R

(1)
0 + · · · = O(�), whereas the following (m � 1)

eigenvalues R(0)
m are of O(1) and grow with m as m2. Dependence of Rm on k is

weak enough and can be found in higher orders of the expansion (3.4). If, however,
perturbations are very short-wavelength, k� = O(1), we have in the main order a
somewhat different spectral problem,

d2g(0)

dY 2
+

[
R(0) N(Y ) − k2�2

]
g(0) = 0,

∣∣g(0)(±∞)
∣∣ < ∞. (3.6)

Its eigenvalues R(0)
m (k�) grow both with m and k�, and in the limit k� → 0 become the

eigenvalues of the problem (3.5).
With N(Y ) = (1/2) sech2Y , (3.6) can be reduced to the Gegenbauer equation

(Abramowitz & Stegun 1964), and the spectrum can be found analytically:

R(0)
m = 2(m + k�)(m + k� + 1)

k��1−→ 2m(m + 1). (3.7)
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Note that eigenvalues with m � 1 can be also approximately calculated by WKB
(or Liouville–Green, see, for example, Nayfeh 1973; Olver 1974) method which
yields

R(0)
m = π2

(
m + 1

2

)2
/[∫ ∞

−∞
dY

√
N(Y )

]2

(3.8)

for the problem (3.5), and a somewhat more complicated formula for the problem
(3.6). In particular, using (3.8) we find that (compare with (3.7))

R(0)
m = 2

(
m + 1

2

)2
for N(Y ) = 1

2
sech2Y,

R(0)
m =

π3/2

2

(
m + 1

2

)2
for N(Y ) =

1√
π

e−Y 2

.

Eigenfunctions g(0)
m (Y ) ≡ sm(Y ) of the problem (3.5) (m is the number of nodes) are

conveniently normalized by sm(+∞) = 1 so that

sm(+∞) = 1, sm(−∞) = (−1)m am, m = 0, 1, 2, . . . . (3.9)

Numbers am > 0 depend on the N(Y ) behaviour: if, for example, N(Y ) is even, all
am =1. Matching to g±(y) yields (see (3.1))

g+ N = 1, g− N = (−1)m am + O(�).

The second (linearly independent) solution hm(Y ) of (3.5) is specified by the condition

lim
Y→+∞

[hm(Y ) − Y ] = 0 so that W (sm, hm) = sm h′
m − s ′

m hm = 1

(the prime denotes a derivative in independent variable, i.e. in Y ). As Y → −∞,

hm(Y ) =
(−1)m

am

(Y + bm) + EST, (3.10)

where bm are some real numbers, and EST denotes hereinafter exponentially small
terms which are due to the stratification rapidly decaying with |Y |.

The case m = 0 is special because

R
(0)
0 = 0, s0(Y ) ≡ 1, h0(Y ) = Y,

for any N(Y ). In the next order, O(�), (3.2) yields

d2g
(1)
0

dY 2
= −R

(1)
0 N(Y ), g

(1)
0 = −R

(1)
0

∫ ∞

Y

dY1(Y1 − Y ) N(Y1) + α Y.

As Y → +∞, g
(1)
0 = α Y + EST, and when Y → −∞ using (2.4) we obtain

g
(1)
0 =

(
α + R

(1)
0

)
Y + EST.

Matching it to (3.1) we see that α = g′
+ N/g+ N and

R
(1)
0 ≡ J

(1)
0

(c − uN )2
=

(
g′

−
g−

− g′
+

g+

)
y=yN

=
g′

− N

g− N

− g′
+N

g+N

. (3.11)

This coincides exactly with the dispersion relation in two-layer (� = 0) flows (see
Churilov 2004, 2005) whereas the parameter � will appear only together with higher
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terms of the expansion of R0. In particular, at O(�2)

d2g
(2)
0

dY 2
= −R

(1)
0 N(Y ) g

(1)
0 −

(
R

(2)
0 +

2u′
N R

(1)
0

c − uN

Y

)
N(Y ) − u′′

N

c − uN

+ k2,

g
(2)
0 =

(
k2 − u′′

N

c − uN

)
Y 2

2

−
∫ ∞

Y

dY1 (Y1 − Y )

[
R

(1)
0 g

(1)
0 (Y1) + R

(2)
0 +

2u′
N R

(1)
0

c − uN

Y1

]
N(Y1).

Matching to (3.1) yields

R
(2)
0 = − R

(1)
0

∫ ∞

−∞
dYN(Y ) g

(1)
0 (Y ) = R

(1)
0

2
∫ ∞

−∞
dYN(Y )

∫ ∞

Y

dY1(Y1 − Y ) N(Y1)

= 2 R
(1)
0

2
∫ ∞

−∞
dYN(Y )

∫ ∞

Y

dY1Y1 N(Y1) = 2 R
(1)
0

2
∫ ∞

−∞
dYY N(Y )

∫ Y

−∞
dY1N(Y1).

(3.12)

The integral on the right-hand side of (3.12) is positive and is easily calculated with
model N(Y ) profiles

R
(2)
0 =

R
(1)
0

2

2
for N(Y ) = 1

2
sech2Y, R

(2)
0 =

R
(1)
0

2

√
2π

for N(Y ) =
1√
π

e−Y 2

.

Thus, the more precise dispersion relation has the form

J0

(c − uN )2
= R

(1)
0 + 2�R

(1)
0

2
∫ ∞

−∞
dYN(Y )

∫ ∞

Y

dY1Y1 N(Y1) + O(�2). (3.13)

Let us now turn to modes with m � 1. At O(�), we obtain from (3.2) that

d2g(1)
m

dY 2
+ R(0)

m N(Y ) g(1)
m = −

(
R(1)

m +
2u′

N R(0)
m

c − uN

Y

)
N(Y ) sm(Y ),

g(1)
m = −

∫ ∞

Y

dY1

(
R(1)

m +
2u′

NR(0)
m

c − uN

Y1

)
N(Y1) sm(Y1)[sm(Y ) hm(Y1) − sm(Y1) hm(Y )]

+ β hm(Y ),

matching to (3.1) yields

I (m)R(1)
m = a2

m

g′
− N

g−N

− g′
+N

g+N

− 2u′
N R(0)

m

c − uN

∫ ∞

−∞
dYY N(Y )s2

m(Y ),

I (m) =

∫ ∞

−∞
dYN(Y ) s2

m(Y ) > 0,

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

and the dispersion relation has the form (compare with (3.13))

Jm

(c − uN )2
= �−1Rm = �−1R(0)

m + R(1)
m + O(�). (3.15)

If N(Y ) is even, (3.14) becomes simpler (compare with (3.11)):

R(1)
m =

1

I (m)

(
g′

− N

g− N

− g′
+ N

g+ N

)
.
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Figure 2. (a) Upper boundaries, and (b) configuration of particular instability domains.

In particular,

R(1)
m = (2m + 1)

(
g′

− N

g− N

− g′
+ N

g+ N

)
when N(Y ) = 1

2
sech2Y.

Note, by the way, that if we put m =0 in (3.14) (i.e. a0 = 1, s0(Y ) ≡ 1, R
(0)
0 = 0) we

obtain the relation (3.11) so that we can use (3.14) for any m.
As c � 1, g±(y) are real and the dispersion relations (3.13) and (3.15) are also

real, and they can be considered as expansions of Jm in � under fixed c and k.
Functions Jm(k; c) increase monotonically both with k and c, and that is why the
curve J = Jm(k; 1) serves as the lower boundary on the (k, J )-plane for the mth family
of neutral modes overtaking the flow. Note that J0(k; 1) = O(1) (when k� � 1) and
tends to J = J1(k) (see figure 1) as � → 0, whereas curves J = Jm(k; 1) with m � 1
lie much higher. Namely, each subsequent curve J = Jm+1(k; 1) is higher than the
preceding (the mth) by 
J = O(�−1) 	 1 (see figure 2 a), and when � → 0 this step
increases infinitely.
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3.2. Configuration of instability domains

In the case of two-layer flows (� = 0) the domain of unstable oscillations lies
immediately under the dispersion curve J = J1(k). Calculations yielding this result
(see Appendix B, available as a supplement to the online version of the paper) are
based on two circumstances, namely, on the existence of neutral oscillations with
c =1 and on the appearance of the critical level at the far periphery of the flow
(where stratification is negligible; it is the assumption of fast (exponential) decrease
of n(y) as y recedes from yN that is necessary for this) when 0< 1 − cr � 1, and both
of these are quite insensitive to distribution of density at y = O(1), i.e. are valid for
finite � as well. Hence, for any k, the domain of unstable oscillations is necessarily
adjacent to each dispersion curve J = Jm(k; 1) from below so that these curves serve
simultaneously as the upper boundaries of particular instability domains.

In the absence of stratification (at J = 0), the flows under consideration are
obviously stable, therefore, every mth domain of instability should have also a
lower boundary, J = J (−)

m (k) > 0. Approaching it from above, unstable oscillations
(with ci > 0) become stable (ci = 0) and continue to be in phase resonance with the
flow. Equation (2.3) in this case has a singularity at the critical level y = yc(k; m), and
marginally stable oscillations have a spatial structure of singular neutral modes (Miles
1961, 1963). As long as the singularity is out of the transitional layer (|yc − yN | 	 �),
the inner problem remains regular and the dispersion relations (3.13) and (3.15) are
suitable for unstable and marginally stable oscillations as well. However, it is more
convenient to treat them now as the equations for finding the complex phase velocity
c for given J and k.

Note that in (3.15) the main term on the right-hand side is real, and only the
next term, R(1)

m , can be complex, therefore when m � 1, ci = Im c = O(�) or it is less.
On the contrary, the real and imaginary parts of the right-hand side of (3.13) are
generally of the same order so that at m =0, the order of magnitude of ci is not
related directly to � and even ci = O(1) is possible. (Calculations made for some model
velocity profiles (at � =0) have demonstrated that maxk,J ci ≈ 0.07, see Churilov 2005;
Redekopp 2001.) However, our primary objective is to outline the boundaries of the
instability domain, and therefore we assume that J and k are such that |ci | � |cr −uN |,
and we draw inferences about the stability of oscillations based on the sign of ci . (It
is well known that if the Taylor–Goldstein equation is regarded as a limit (at large
Reynolds numbers) of the equations taking into account dissipation (viscosity, heat
conduction, salt diffusion, etc.), then the limit for dissipative solutions is provided
only by unstable (ci > 0) and neutral (ci = 0) solutions of (2.3) (in which the points
of phase resonance are bypassed according to the Landau rule, see, for example,
Dikii 1976; Timofeev 2000). On the contrary, its solutions with ci < 0 (which formally
implies damped oscillations) are not such a limit, and eigenoscillations of the flow
corresponding to them probably do not exist.) In that case, the left-hand sides of the
dispersion relations (3.13) and (3.15) can be written as

Jm

(c − uN )2
≈ Jm

(cr − uN )2
− 2iJmci

(cr − uN )3
, m = 0, 1, 2, . . . . (3.16)

It is easy to see that the sign of ci coincides with the sign of the imaginary part of Rm

when cr <uN and is opposite if cr > uN . To calculate Rm, it is necessary to know the
outer solutions g±(y) when � � |y −yN | � 1. Their behaviour essentially depends on k

so we must consider the cases k = O(1), k � 1 and k 	 1 separately. These extensive
calculations are given in Appendix A.
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Summarizing their results, it is necessary to stress that eigenoscillations with a
critical level outside of the transitional layer can be unstable or marginally stable if
and only if their phase velocity is higher than the flow velocity in the transitional
layer, uN < cr � 1 (remember that the same is true as � = 0). As for marginally stable
oscillations of this class with cr < 1, they exist only in the case of very long (k < � � 1)
or short (k 	 1) waves. In other words, RIP can describe the lower boundaries
J = J (−)

m (k) of particular instability domains in the extremities of the spectrum leaving
its middle band, � < k � O(1), for SIP. The resulting configuration of instability
domains (for the flow (2.5)) is shown in figure 2 (b). Now we consider long- and
short-wavelength bands in more detail.

3.2.1. Long-wavelength band

When k � 1 and cr > uN , we can show that (see Appendix A)

ci = Cm L

[
k (1 − c)2 − J

∫ ∞

yc

dy1 n(y1)

]
(CmL > 0). (3.17)

The first term in square brackets ‘provides’ for instability (it is exactly the same as
at � =0) whereas the second term which is due to continuity of density variation (to
‘spreading’ of n(y)) is responsible for stabilization, and the boundary of the instability
domain lies where

k (1 − c)2 = J

∫ ∞

yc

dy1 n(y1). (3.18)

Let us emphasize that the stabilizing effect is the stronger the smaller J is, therefore
it is merely the lower boundary. It follows from (3.15) that (at given k) we can reduce
J only by reducing c − uN , i.e. making yc closer to yN , but in this case the integral
of n(y) increases very rapidly so that the right-hand side of (3.18) increases as well.
(Also, this means that the marginally stable mode with c < 1 is unique for each m;
and the same is true when k 	 1, see (3.22).)

Relations (3.15) and (3.18) set J (−)
m (k) in a parametric form, J = Jm(c) and k = km(c).

It is easily seen that Jm grows relatively slowly with increasing c whereas k decreases
very rapidly. As c → 1 (i.e. yc → ∞), k → 0 and J → Jm(0; 1), i.e. the upper and lower
boundaries of the mth instability domain join at k = 0 (see figure 2 b). To illustrate
the lower boundary behaviour, we take (if y − yN 	 � only the asymptotic form of
n(y) is required)

n ≈ n0 exp[−β(y − yN )/�], β = O(1). (3.19)

Then

k (1− c)2 =
�Jm

β
n0 exp[−β(yc −yN )/�] =

Rm

β
(c −uN )2n0 exp[−β(yc −yN )/�], (3.20)

and we see that the long-wavelength boundary of the instability domain is
exponentially close to the ordinate axis (figure 2 b) merging with it as � → 0 (figure 1).

The inner problem remains regular as long as |yc − yN | 	 �. In the lower limit of
this inequality, when yc − yN ≡ �Yc = O(�), we use (3.15) to obtain:

Jm�1(c) ≈ Rm u′
N

2
� Y 2

c = O(�),

∫ ∞

yc

dy n(y) = O(1), (3.21)

so that, according to (3.18), k =O(�). Thus, we have described the lower boundaries
J = J (−)

m (k) of particular instability domains when 0 � k < �.
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3.2.2. Short-wavelength band

When k 	 1,

ci = Cm S

[(
n′

c

nc

− 2k

)
Ri c − u′′

c

u′
c

(1 + Ri c)

]
(Cm S > 0), (3.22)

where Ri (y) = Jn(y)/[u′(y)]2 is a local Richardson number. Here, the contributions
due to stratification and velocity shear compete (recall that, u′′

c < 0, n′
c < 0 and

(−n′
c/nc) = O(�−1) 	 1), namely, velocity shear generates instability and stratification

acts in a stabilizing manner and suppresses instability when

J

u′
c
2
(n′

c − 2knc) =

(
1 +

Jnc

u′
c
2

)
u′′

c

u′
c

=
u′′

c

u′
c

[1 + O(�)]. (3.23)

Excluding the velocity c from (3.15) and (3.23), we obtain the equation J = J (−)
m (k)

for the lower boundary of the mth instability domain in the short-wavelength region
of the spectrum. For illustration, let us consider the same example (3.19) assuming
yc − yN � 1. As k 	 1, g±(y) ≈ exp(−k|y − yN |) and (3.13)–(3.15) yield

Jm = �−1Rm(c − uN )2 ≈
{

2ku′
N

2(yc − yN )2, m = 0,

�−1R(0)
m u′

N
2(yc − yN )2, m � 1.

(3.24)

Substituting (3.19) into (3.23) and keeping in mind that n0 = O(�−1), we obtain the
equation

Z2e−Z ≈ − � β2

(β + 2k�)(n0�)Rm

u′′
N

u′
N

, Z = β(yc − yN )/�,

which implies that the difference

yc − yN ∼ � ln[(β + 2k�)Rm/�],

i.e. it is only logarithmically large compared with � and exhibits a slow (logarithmic)
growth with m and k�. Hence, J (−)

m (k) also slowly increases with k, mainly owing to
increasing Rm(k) (see figure 2 b).

Thus, we have seen that J (−)
m (k) decrease with k when k � 1 and grow when k 	 1,

hence, they should take minimal values in the middle part of the spectrum where
uN − c = O(�). If we note that min R

(1)
0 = O(1) at k = O(1) (see (3.11) and (4.5)) and

use (3.15), we obtain an estimate

0 < min
k

J
(−)
0 (k) = J∗ = O(�2), 0 < min

k
J

(−)
m�1(k) = O(�), (3.25)

which will be supported by further analysis (see also figure 2 b).

4. The singular inner problem
4.1. Formulation of the problem

If phase velocity of perturbation is such that |c − uN | = O(�), its critical level reaches
the transitional layer, and the character of the inner problem changes dramatically
so that it becomes singular (SIP). Passing to the inner variable Y in (2.3) while
keeping in mind that yc − yN = �Yc = O(�) yields an equation up to terms of O(�2)
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inclusive (P = J/�u′
N

2)

d2g

dY 2
+

{
P N(Y )

(Y − Yc)2

[
1− u′′

N

u′
N

�(Y + Yc)+
3u′′

N
2

4u′
N

2
�2(Y + Yc)

2− u′′′
N

3u′
N

�2
(
Y 2 + Y 2

c + YYc

)]

− �u′′
N

u′
N (Y − Yc)

[
1 − u′′

N

2u′
N

�(Y + Yc) +
u′′′

N

u′′
N

�Y

]
− k2�2

}
g = 0, (4.1)

which has a singularity at Y = Yc (compare with (3.2)). We shall restrict our con-
sideration to searching for marginally stable solutions for which ci =0+, and
eigenfunctions are calculated by the Landau rule with bypassing of the singular
point in the complex Y plane from below (see, for example, Dikii 1976; Drazin &
Reid 1981; Timofeev 2000).

Equation (4.1) should be complemented by boundary conditions as Y → ±∞
which can be found from matching to outer solutions g±(y) when 1 � |Y | � �−1.
Furthermore, according to Miles (1961, 1963), the eigenfunction of marginally stable
oscillation can be represented in the form (see also Drazin & Reid 1981)

g(Y ) = (Y − Yc)
μ g̃(Y ) (0 � μ � 1), (4.2)

where g̃(Y ) is an analytic function in the vicinity of Yc. Substituting (4.2) into (4.1)
we find easily that

1
4

� μ(1 − μ) = PNc

[
1 − 2u′′

N

u′
N

�Yc +

(
3u′′

N
2

u′
N

2
− u′′′

N

u′
N

)
�2Y 2

c + O(�3)

]
,

g̃(y) = 1 + α1(Y − Yc) + α2(Y − Yc)
2 + · · · ;

α1 = −1 − μ

2

N ′
c

Nc

+
�u′′

N

2μu′
N

(1 + PNc) +
�2

2μ

(
u′′′

N

u′
N

− u′′
N

2

u′
N

2

)
Yc + · · · ,

α2 =
μα2

1

1 + 2μ
− PN ′′

c

4(1 + 2μ)
+ · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

The first of these equations, μ(1 − μ) = p, has two roots

μ = μ± = 1
2

±
√

1
4

− p.

The solution of the problem (4.1) corresponding to the smaller of them will be referred
to as the μ− mode and the one corresponding to the greater as the μ+ mode.

We encounter an unusual eigenvalue problem consisting of the second-order ordina-
ry differential equation and three ‘boundary conditions’: Miles’s condition (posed at
the singular point) selects one of two linearly independent solutions of (4.1), and
matching this solution to outer solutions g±(y) is achieved by choosing the parameters
P and Yc. In view of the proximity of yc to yN , we use for matching to the inner
solution expansions of g±(y) calculated in the vicinity of y = yc. They have a form
which is standard for solutions of the Rayleigh equation (see, for example, Dikii 1976;
Drazin & Reid 1981)

g±(y) = a±

[
1 +

u′′
c

u′
c

(y − yc) ln |y − yc| + · · ·
]

+ b±[(y − yc) + · · ·]. (4.4)
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Factors a± and b± depend on k and yc, their ratios (b/a)± are real, and (for details,
see Appendix A)

0 < b−/a− = O(1), 0 < b+/a+ = O(k−1) 	 1 if k � 1,

(b/a)± = O(1) if k = O(1),

−(b+/a+) ≈ b−/a− ≈ k 	 1 if k 	 1.

⎫⎪⎬
⎪⎭ (4.5)

Let us divide our problem into two. First, for given Yc = Y0, we find solutions
(eigenfunctions) of (4.1) satisfying Miles’s condition (4.2) and the left (as Y → −∞)
boundary condition as well as corresponding eigenvalues P (Y0; k). Then, bypassing
the singular point Y = Y0 from below, we continue these solutions analytically on the
ray Y >Y0, calculate their asymptotic expansions

g(Y ) = A + B (Y − Yc) + · · · = A + �−1B (y − yc) + · · · (4.6)

as Y → +∞ and, matching them to (4.4), find the dependence k(Y0) that, being
considered together with P (Y0; k), provides the dispersion relation P = P (k) at the
stability boundary. In § 3, it has been shown that when k 	 1, the critical level of a
marginally stable oscillation is outside of the transitional layer (yc − yN 	 �). Hence,
considering SIP as complementary to RIP, we can restrict ourselves to the case k� � 1.

We search for the solution of ‘a spectral problem to the left of Y0’ in the form of
expansion in �:

g = g(0)(Y ) + �g(1)(Y ) + · · · , P = P (0) + �P (1) + · · · (μ = μ(0) + �μ(1) + · · ·). (4.7)

At O(1) in view of (4.4), we obtain:

d2g(0)

dY 2
+

P (0)N(Y )

(Y0 − Y )2
g(0) = 0, lim

Y→−∞

dg(0)

dY
= 0;

g(0)(Y ) = (Y0 − Y )μ
[
1 − 1 − μ

2

N ′
0

N0

(Y − Y0) + O((Y − Y0)
2)

]
(|Y0 − Y | � 1),

μ(1 − μ) = P (0)N0 ≡ P (0)N(Y0) � 1
4
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.8)

(when Y0 is bypassed by the Landau rule, g(0)(Y ) acquires the factor exp(−iπμ) for
Y < Y0, but it does not play an essential role and will be omitted as will be the
superscript (0) for μ).

4.2. The spectrum of the problem (4.8)

As does (3.5), this problem concerns zero energy level in the potential well of a
given form with depth regulated by the stratification parameter (P (0)), but is more
complicated because the potential is singular. Like (3.5), it has an obvious (trivial)
solution

P
(0)
0 = 0, g

(0)
0 (Y ) ≡ 1 (μ = 0). (4.9)

To search for other (non-zero) eigenvalues we change variables in (4.8),

Y0 − Y = ξα, g = (Y0 − Y )λ z(ξ ) ≡ ξ (α−1)/2 z(ξ ), α = (1 − 2λ)−1 > 1,

where λ is the least root of the equation λ(1 − λ) = p ≡ P (0)N0. (We assume p < 1/4,
and the case p = 1/4 (λ= 1/2) can be considered as a limiting one.) We obtain

d2z

dξ 2
+

λ(1 − λ)

(1 − 2λ)2ξ 2

[
N(Y0 − ξα)

N0

− 1

]
z = 0 (|z(+∞)| < ∞). (4.10)
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The Miles condition with proper normalization takes the form: as ξ → 0

z(ξ ) = 1 + O(ξα) for the μ− mode (i.e. when μ = λ),

z(ξ ) = ξ [1 + O(ξα)] for the μ+ mode (i.e. when μ = 1 − λ).

Continuing the potential in (4.10) onto ξ < 0 in such a way that it would be even, and
adding the condition |z| < ∞ as ξ → −∞, we come to a new spectral problem, whose
even solutions correspond to the μ− mode whereas its odd solutions correspond to
the μ+ mode. Clearly, non-trivial solutions (λ> 0) exist only when there is a potential
well, i.e. a region in ξ where N >N(Y0). As N(Y ) has a single maximum (N = NM

at Y = YM ), such a well exists only if this maximum is situated to the left of Y0

(i.e. if YM <Y0). It also implies that any non-trivial solution of (4.8) (without loss of
generality it can be considered as positive when Y > Y0) increases monotonically and
infinitely to the right of Y0 so that in its asymptotic expansion (4.6) B > 0.

In Appendix C, it is shown that the problem (4.8) has at least one non-trivial
solution for any Y0 >YM or, more precisely, an odd number of such solutions. If Y0 is
close enough to YM , the well in (4.10) is shallow and there is indeed only one solution.
On the other hand, as Y0 	 1, the spectrum of SIP should pass into the spectrum of
RIP, therefore the number of non-trivial solutions should increase with growing Y0,
and new solutions should appear in pairs. How this proceeds we can understand by
using the WKB solution of (4.10) (or considering a model spectral problem which can
be solved exactly, see Appendix D) which yields the dispersion equation (for details,
see Appendix C)

√
μ(1 − μ) D(Y0) = m + μ, D(Y0) =

1

π
√

N0

∫ x0

0

dx

x

√
N(Y0 − x) − N0, (4.11)

where x0 is the second (regular) turning point: N(Y0 − x0) = N0. For each value of
D(Y0) > 0 (i.e. Y0 >YM ), this equation has an even number of roots

μ(±)
m =

1

2(1 + D2)

[
D2 − 2m ± D

√
D2 − 4m(m + 1)

](
0 � m �

√
1 + D2 − 1

2

)
,

or(
P (±)

m N0

)1/2
=

1

2(1 + D2)
[(2m + 1)D ±

√
D2 − 4m(m + 1)],

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(4.12)

including the root μ
(−)
0 = 0 (P (−)

0 = 0) which corresponds to the trivial solution (4.9),
and this number increases with growing D(Y0). Namely, the mth pair of roots arises
when D = Dm =

√
4m(m + 1) and exists as long as D � Dm, and in their origin both

solutions belong to the μ− mode because μ(±)
m (Dm) = m/(2m+1) < 1/2. With growing

D(Y0), one root, monotonically decreasing, moves along a descending branch μ(−)
m of

the mth dispersion curve, and the other, monotonically increasing, moves along its
ascending branch μ(+)

m , tending to 1. Transition of the solution from the μ− to the μ+

mode (at μ(+)
m = 1/2) occurs when D2 = D2

m + 1 = (2m + 1)2. Figure 3(a) shows results
of numerical calculations of Pm(Y0) for model N(Y ) profile (2.5) and, for comparison,
results of calculations in the WKB approximation for m � 1. Bold dots correspond to
μ = 1/2 and separate μ− and μ+ modes.
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(a)

500

100
m = 3

2

1

0

P

10

1

0 1 2 3
Y0

4 5

(b)
4

(× 10–4)

3

J 2

1

0 1
k

2

Figure 3. (a) Eigenvalues P
(0)
m (Y0) of the problem (4.8) (bold solid lines). WKB results are

shown by dashes, and the lower branch of the m= 0 dispersion curve corrected for the finiteness
of � is shown by thin solid line. (b) Lower boundary of the instability domain (m= 0) calculated
by numerically solving (2.3) (solid line) and by means of asymptotic formulae (4.14) and (4.17)
(dashes).

For comparison with the spectrum of RIP we consider a limiting case Y0 	 1. In
this limit, the integral

D(Y0) =
1

π
√

N0

∫ Y0

Y0−x0

dY

Y0 − Y

√
N(Y ) − N0 =

1

πY0

√
N0

[∫ ∞

−∞
dY

√
N(Y ) + O

(
Y −1

0

)]

grows rapidly (at least, exponentially) with Y0, and the number of eigenvalues of the
problem (4.8) grows proportionally to it. As D 	 m + 1, it is found from (4.12) that

μ(−)
m =

m2

D2
+ O

[(
m + 1

D

)4
]

, μ(+)
m = 1 − (m + 1)2

D2
+ O

[(
m + 1

D

)4
]

.

Because PmN0 =μ(1 − μ),

P (±)
m ≈ π2(m + 1)2[∫ ∞

−∞
dY

√
N(Y )

]2
Y 2

0 , for mode μ+, (4.13a)

P (±)
m ≈ π2m2[∫ ∞

−∞
dY

√
N(Y )

]2
Y 2

0 , for mode μ−. (4.13b)

Taking into account relationships between parameters P , R and J (see (3.3)), we see
that when 1 � Y0 � �−1, eigenvalues (4.13) of SIP are in satisfactory agreement with
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eigenvalues of RIP (compare with (3.8) and (3.15)) if m � 1. At m =0, WKB gives too
rough an approximation and this case should be considered separately (see below).

The problem (4.8) and its solutions are the first approximation to solutions of
(4.1). Calculation of the higher terms of the expansion (4.7) yields only small (O(�))
corrections to the spectrum already found. The branch μ

(−)
0 described by the trivial

solution (4.9) as well as the part of the branch μ
(+)
0 corresponding to Y0 − YM = O(�)

are obvious exceptions because for them ‘corrections’ are just the eigenvalues. Let us
calculate the next term of expansion (4.7) after (4.9). From (4.1) at O(�), we have:

d2g
(1)
0

dY 2
=

u′′
N

u′
N (Y − Y0)

− P
(1)
0 N(Y )

(Y − Y0)2
,

g
(1)
0 =

u′′
N

u′
N

(Y − Y0)[ln �(Y − Y0) − 1] − P
(1)
0

∫ ∞

Y

dY1N(Y1)

(Y1 − Y0)2
(Y1 − Y ) + B1 (Y − Y0).

Calculating asymptotic expansions of g
(1)
0 as Y → ±∞ and matching g0 = 1 + �g

(1)
0 +

O(�2) to (4.4), we obtain: a+ = 1, a− = 1 + O(�), B1 = b+ + O(�), and

P
(1)
0

∫ ∞

−∞

dYN(Y )

(Y − Y0)2
= b− − b+ + i π

u′′
c

u′
c

+ O(�), (4.14)

where Y =Y0 is bypassed from below, and b± are real. The right-hand side of (4.14)
depends on k through (b− −b+) (see (4.5)), and since u′′

c/u
′
c < 0, its argument is between

−π and 0.
The imaginary part of the integral at the left-hand side is obviously equal to πN ′

0.
Because N(Y ) has a single maximum (at Y =YM ), the real part of the integral is
positive when |Y0| 	 1 and negative at Y0 = YM , hence, its argument varies from 0 to
−π as Y0 decreases from +∞ to YM , and is subjected to further variation from −π
down to −2π as Y0 decreases from YM to −∞. The position Y0(k) of the critical level
of marginally stable perturbation is obviously such that arguments of the right- and
left-hand sides of (4.14) are equal. Hence, when stratification is stable (P > 0), Y0 > YM

on the stability boundary.
In the framework of RIP, J

(−)
0 (k) was found for k 	 1 and k < � � 1. Let us see

what (4.14) yields in these cases. When k 	 1, b− − b+ ≈ 2k (see (4.5)) and

J

�2u′
c
2

(
f.p.

∫ ∞

−∞

dYN(Y )

(Y − Y0)2

)
≈ 2k,

JN ′
0

�2u′
c
2

=
u′′

c

u′
c

,

where f.p. stands for the finite (or, which is the same in this case, real) part of the
integral. The right-hand side of (4.14) has a small (O(k−1) negative argument, hence
Y0 	 1 and

JN ′
0

�2u′
c
2

=
u′′

c

u′
c

,
J

�2u′
c
2Y 2

0

≈ 2k, (4.15)

which coincides with relations (3.23) and (3.24) describing the lower boundary in
the framework of RIP. In an opposite limit, k � 1, 0 < b+ − b− ≈ u′

c
2
/[k(1 − c)2] (see

(4.5) and (A11)). Hence, the argument of the right-hand side of (4.15) is close to −π,
Y0 = YM + O(k) and

P
(1)
0 N ′

0 =
u′′

c

u′
c

, P
(1)
0 ≈ u′

c
2

k(1 − c)2

(∫ ∞

−∞

dY

(Y − YM )2
[NM − N(Y )]

)−1

. (4.16)
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In the next (O(�2)) order, we also obtain the complex-valued equation(
P

(2)
0

P
(1)
0

− 2u′′
NY0

u′
N

)∫ ∞

−∞

dYN(Y )

(Y − Y0)2
+ 2(δY0)

∫ ∞

−∞

dYN(Y )

(Y − Y0)3

=

[
u′′

N

u′
N

(3 − 2 ln �) − 2G′
c

Gc

] ∫ ∞

−∞

dYN(Y )

Y − Y0

− 2u′′
N

u′
N

∫ ∞

−∞

dYN(Y )

Y − Y0

ln(Y − Y0)

− 2P
(1)
0

∫ ∞

−∞

dYN(Y )

Y − Y0

∫ ∞

Y

dY1N(Y1)

(Y1 − Y0)2
, (4.17)

that allows us to calculate (real) corrections to the eigenvalue (P (2)
0 ) and to the position

of the critical level (δY0), etc. The resulting dependence P0(Y0) = �P
(1)
0 + �2P

(2)
0 +O(�3)

describes the branch μ
(−)
0 corrected for the finiteness of �. This solution is valid when

|�P (1)
0 | � 1, or, as follows from (4.16), when k 	 �, i.e. far from the region k < � where

RIP works. Continuation of (4.16) into smaller k is associated, as we shall see further,
with motion along the branch μ

(+)
0 . The corrected μ

(−)
0 branch is shown in figure 3(a)

(by thin line) and, in the form J = J
(−)
0 (k), in figure 3(b). In figure 3(a), we can see how

this branch will connect with the (corrected as well) branch μ
(+)
0 to give a corrected

P = P0(Y0) curve. It is evident that this curve will run to neither Y0 =YM nor P = 0. (It
is shown in Appendix C that the P = P0(Y0) curve is rounded when P and (Y0 − YM )
are both of O(�1/2).)

Note that, according to (4.15) and (4.16), the resulting dependence J = J
(−)
0 (k) is a

function decreasing when k � 1 and growing when k 	 1, i.e. having a minimum at
k = O(1). In this case, the module and the argument of the right-hand side of (4.14)
are both of the order of unity, so that Y0 = O(1), P

(1)
0 min = O(1) and

J∗ = min
k

J
(−)
0 (k) = �u′

N

2
P0 min ≈ �2u′

N

2
P

(1)
0 min = O(�2),

in complete agreement with an estimate (3.25). Exact values of J∗ and of corresponding
k depend, obviously, on profiles of velocity and density and can be found only
numerically.

4.3. Spectrum of SIP, matching to RIP and lower boundaries of instability domains

Thus, we have shown that SIP has eigenvalues only when Y0 > YM , their number is
even and grows proportionally to D(Y0). When 1 � Y0 � �−1, the domains of validity
of RIP and SIP overlap and their spectra are in reasonable agreement (compare
(3.8) and (3.21) with (4.13)) but a ‘splitting’ takes place: two eigenvalues of SIP, P (±)

m ,
correspond to the eigenvalue Rm of RIP with the same m, with one eigenvalue of
SIP belonging to the μ+ mode and the other to the μ− mode. On the other hand,
RIP can describe the lower boundaries of particular instability domains only in two
extreme bands of k, when either 0 � k < � � 1 or k 	 1. It is reasonable to suppose
that solutions of RIP match the μ+ mode on one of these extremities and the μ−
mode on the other.

Indeed, for any m, it can be shown (for details, see Appendix C) that on the
long-wavelength (k < �) end of the oscillation spectrum, as the critical level ‘ intrudes’
(with increase in k) into a peripheral region (1 � Y0 � �−1) of the transitional layer,
the solution of RIP passes into the μ+ mode of SIP with μ ≈ 1. Further, as we moves
along the dispersion curve P =Pm(Y0) (or, otherwise, P = Pm(μ)) corrected for the
finiteness of � towards a decrease of μ (first along the branch μ(+)

m and then along
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the branch μ(−)
m ), k grows, and the μ− mode of SIP (with μ close to zero) should pass

ultimately into solution of RIP.
This scenario is fulfilled very well at m =0. It can be shown (see Appendix C)

that transition between μ
(+)
0 and μ

(−)
0 branches takes place when k, P0 and Y0 are

all of O(�1/2). As we have seen earlier, the μ− mode describes the lower stability
boundary from this point up to 1 � k � �−1 where a smooth transition takes place to
the boundary calculated within the RIP. However, if m > 0 the passage from k = O(�)
to k = O(1) is not so straightforward.

To understand the difficulty here we consider the second part of SIP, namely, we
continue (using the Landau rule) each of the found eigenfunctions of (4.8) on the ray
Y >Y0, then, having calculated the ratio of the coefficients A and B of its asymptotic
(as Y − Y0 	 1) expansion (4.6), we match this continued eigenfunction to the outer
solution g+(y) and thereby find k = km(μ). These relations, together with eigenvalues
P = Pm(μ) of (4.8), set lower boundaries J = J (−)

m (k) in a parametric form. As was
mentioned earlier, B > 0, hence, B/A= O(1) or even greater (see Appendix C), and
for matching to (4.4) b+/a+ must be O(�−1) or greater. In accordance with (4.5) this
corresponds to k = O(�).

However, it does not mean that within the framework of SIP it is impossible to
describe perturbations with k > �. The difficulty is that the problem (4.8), as the first
approximation to SIP, is not an approximation uniformly valid for all Y0. Namely,
it yields correct asymptotics (4.6) of eigenfunctions when μ 	 �, but its results are
incorrect when μ = O(�) or less.

To verify this, suppose that ‘the spectral problem to the left of Y0’ is solved, and
the spectrum of SIP P = Pm(Y0) is known. Let us choose some m � 1 and examine
more attentively SIP and its solutions when Y >Y0 >YM and μ =μ− ≈ PN0 � 1. Since
N(Y ) decreases rapidly (exponentially), μ becomes of the same order as � already
for not so great values of Y0, namely, for Y0 = O(ln �−1) or even less, and this fact
implies two significant consequences for solutions of SIP. First, the second term in
the coefficient α1 of the Miles expansion (see (4.2) and (4.3)) increases up to O(1) and
starts to compete with the first term so that

g(Y ) = 1 − 1

2

(
N ′

0

N0

− �u′′
N

PN0u
′
N

)
(Y − Y0) + O(PN0 + �) (0 < Y − Y0 � 1). (4.18)

Secondly, in (4.1) the first term in braces (and, together with it, the entire expression
in them) becomes O(�). Hence, when Y >Y0, the solution of (4.1) can be written as
g(Y ) = A + B(Y − Y0) + O(�), and matching it to (4.18) yields

A = 1 + O(PN0 + �), B =
1

2

(
�u′′

N

PN0u
′
N

− N ′
0

N0

)
+ O(PN0 + �).

As a result, unlike the problem (4.8), the factor B is no longer positive for all Y0. It
is positive when Y0 <Y∗, equal to zero at Y0 = Y∗ (Y∗ depends on m (as Pm(Y0) does),
namely, it slowly (logarithmically) increases with m), where (compare with (3.23) and
the first relation in (4.16))

PN ′
0 =

�u′′
N

u′
N

+ O(�2), (4.19)

and negative when Y0 > Y∗ (recall that N ′
0 < 0 and u′′

N < 0). This opens for SIP a way
from k = O(�) not only to k = O(1) but also into domain k 	 1 where A and B should
have opposite signs (see (4.5)).
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It is necessary now to specify a procedure for finding eigenvalues P = Pm(Y0) of
SIP which would take into account reordering in Miles’s condition when μ = O(�).
The solution of (4.1) for Y <Yc is constructed as before, in the form of expansion
in �:

g = g(0) + �g(1) + · · · , P = P (0) + �P (1) + · · · , Yc = Y0 + �Y1 + · · · , (4.20)

In this case, the function g(0), at O(1), obeys the same equation and left (as Y → −∞)
boundary condition (4.8), but the boundary condition at Y → Y0 is to be changed.
Because its essential change is required only when μ = O(�), for the μ+ mode (i.e. for
μ � 1/2) we retain the old boundary condition,

g(0)(x) = xμ(0)

H
(
x; μ(0)

)
, x = Y0 − Y, μ(0)

(
1 − μ(0)

)
= P (0)N0,

H (x; μ) = 1 +
1 − μ

2

N ′
0

N0

x + O(x2),

⎫⎪⎬
⎪⎭ (4.21)

and for the μ− mode (0< μ � 1/2) we take it in a modified form

g(0)(x) = xμ(0)

H
(
x; μ(0)

)
− T x1−μ(0)

H
(
x; 1 − μ(0)

)
, T =

�u′′
N

2μ(0)u′
N

. (4.22)

It is easy to see that at μ(0) = 1/2, boundary conditions (4.21) and (4.22) are in essence
identical, hence the P (0)(Y0) dependence remains continuous. As long as μ(0) 	 �, the
term with a ‘foreign’ degree of x due to (4.22) is small and when matching to Miles’s
expansion (see (4.2) and (4.3)) is compensated by contributions from the higher orders
of the expansion (4.20) while P (0)(Y0) has an addition of O(�/μ(0)). In substance, we
obtain in this case only a somewhat different (as compared to the one found earlier)
way for expanding the same P (Y0) in �. When, however, μ(0) = O(�), the terms in the
right-hand side of the boundary condition (4.22) become of the same order and, as
shown in Appendix E, this choice of the factor T allows us to fit the expansion (4.20)
to the re-ordering in the Miles condition. The procedure of calculating the eigenvalues
and eigenfunctions is detailed in Appendix E. The corrected dependences of P (0)

m on
Y0 and of B/A on μ are shown in figure 4.

Let us draw our attention to the difference in B/A behaviour at m =0 and m > 0
(see figure 4b). According to (4.5), when B/A rises from −1 to +1, k runs from O(�−1)
to O(�), i.e. through the entire ‘responsibility band’ of SIP. As m � 1, this change in
B/A takes place in a fairly narrow range of μ (and Y0) where |T | =O(1), namely, in
the vicinity of points marked by triangles in figure 4(a). For this reason J = J (−)

m (k),
after attaining its minimal value, grows very slowly with k (see figure 2b). On the
contrary, if m =0, B/A remains near zero when μ (as well as T , see (4.22)) changes
by a factor of about 300. The reason is that the condition (4.19) for B = 0 is almost
the same as the imaginary part of the dispersion equation (4.14) of the mode m = 0
and holds approximately in a wide range of Y0.

Lastly, in figure 5 we plot eigenfunctions gm(Y ) of marginally stable oscillations
with k = k∗ ≈ 0.4159 (where J

(−)
0 (k) attains its minimum) and m =0, 1, 2, 3. (more

precisely, they are gm(Y ) if Y <Yc, and |gm(Y )| = gm(Y ) exp(−iπμ) if Y > Yc). The mth
eigenfunction has m nodes and a branch point at Y = Yc (see (4.2)) with a very small
μ =O(�). Note that all nodes are located below the critical level, in a good agrement
with instability interpretation in terms of overreflection (see, for example, Davis &
Peltier 1976, 1979; Smyth & Peltier 1989).
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5. Discussion of results
Thus, we have found the spectrum of eigenoscillations and the configuration of

the instability domain for a wide enough class of shear flows of ideal fluid, namely,
for flows with a bounded monotonically increasing inflection-free velocity profile
(0 � u(y) <U0 = 1, u′(y) > 0, u′′(y) < 0) and with density continuously stratified in
a layer centred at y = yN and having the width � much less than the scale of
velocity variation L = 1. (We represent the squared buoyancy frequency in the form
Ω2(y) = J n(y) so as to describe its ‘profile’ and ‘magnitude’ by normalized (see (2.1))
function n(y) and the bulk Richardson number J , respectively.) Let us discuss and
compare them with the spectrum of oscillations and configuration of the instability
domain of two-layer flows (� =0).

Both for � =0 and for � 
= 0, the spectrum contains ‘fast’ (propagating with phase
velocity c � 1) neutral oscillations and ‘slow’ unstable oscillations (their velocities
are in the range uN ≡ u(yN ) < cr < 1). When � =0, both kinds of oscillation are
conveniently displayed on the (k, J )-diagram where they occupy, respectively, regions
above and below the curve J = J1(k) which is, at the same time, the dispersion curve of
neutral oscillations with c =1 and the upper boundary of the instability domain (see
figure 1). When � 
= 0, the nodeless (m = 0) mode also exists and has a very similar
(k, J )-diagram. Moreover, its own (k, J )-diagram corresponds to each m =1, 2, 3 . . .

(see figure 2b) so that the complete stability diagram of the flow consists of a
denumerable set of (k, J ) sheets. On each of them, fast (neutral) and slow (unstable)
oscillations are separated by the dispersion curve J = Jm(k; 1) of the corresponding
(mth) branch of neutral oscillations with c = 1 (see figure 2a). It is interesting to note
that a similar structure of the spectrum of Holmboe’s waves was obtained by Alexakis
(2005) for (inflected) u = tanh y and n= (R/2)sech2(Ry) when R > 2.

Another crucial difference is that when � 
= 0, there appear lower boundaries of
instability domains, J = J (−)

m (k) > 0, whose position is the higher, the greater m. At
k = 0, the lower boundary joins the upper one (J (−)

m (0) = Jm(0; 1)). As k grows, it
falls abruptly (almost vertically) downwards, reaches its minimum (J = J∗ = O(�2) at
k = k0 =O(1) if m = 0, and J = O(m2�) at k = km = O(�/m) if m � 1), and then starts
to rise slowly (see figure 2b). Such behaviour of J (−)

m (k) becomes clear if we take
into account the fact that of the two mechanisms responsible for instability of shear
flows, the resonance and non-resonance mechanisms (see, for example, Churilov &
Shukhman 2001), it is the resonance mechanism that plays the governing role in
the vicinity of the stability boundary. It is based on the resonance interaction of a
perturbation wave with the flow in the critical layer (surrounding the critical level
y = yc), resulting in the perturbation, on the one hand, being amplified owing to the
velocity shear (because u′′(y) < 0, see, for example, Fabrikant 2002; Timofeev 2000),
while, on the other, being absorbed, owing to stable stratification. The exact balance
of these processes is achieved just on the stability boundary (see (3.18) and (3.23)).

Recall that the stratification which is responsible for absorption of oscillations is
located in a narrow transitional layer and rapidly decays outside of it. For this reason,
in a very wide wavelength range (� < k < �−1), the critical level of marginally stable
oscillations is forced to be located either inside of the transitional layer or on its near
periphery (yc − yN � 1), and this explains the slow variation of J (−)

m with k, as well
as its smallness in comparison with values of J = Jm(k; 1) on the upper boundary of
the same (mth) instability domain (see (3.3)). It is only when the amplification factor
reduces in the long-wavelength range (see (3.17)) that the critical layer (i.e. the region
of resonance wave–flow interaction) is able to leave the vicinity of the transitional
layer and to move toward the flow periphery, as is readily seen in a model example
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(see (3.19) and (3.20)). As a result, when k → 0, velocity c increases, tending to 1, and
J (−)

m sharply increases, and at k = 0, the lower boundary of the instability domain
joins the upper one.

As can be seen in figure 2 (b), all sheets of the new stability diagram are arranged
in the same manner. Roughly speaking, the sheet with number m � 1 can be made
from the zeroth one (m = 0) by contracting it m/� times in k and stretching m2/�

times in J . Comparison of the zeroth sheet with the (k, J )-diagram for two-layer
flow (see figure 1) shows that the fundamental (and practically unique) distinction
between them consists in a strip of stability (0 <J � J

(−)
0 (k)) appearing in continuously

stratified flows when the density difference across the flow is small. There are similar
(but much wider) strips on the other sheets, too.

Bringing together all the particular instability domains, we obtain the total
instability domain of the flow. In the combined (k, J )-diagram (constructed by
superimposing all sheets) it is bounded from below by the curve J = J

(−)
0 (k), but has

no upper boundary. Outside of the total instability domain, there remain only the
strip of stability 0 <J � J

(−)
0 (k) in the lower part of the diagram and a chain of

small triangular ‘stability islands’ extended along the J -axis: the mth island is limited
by the ordinate axis (k = 0), the mth upper (J = Jm(k; 1)) and the (m + 1)th lower
(J = J

(−)
m+1(k)) boundaries of the particular instability domains. Note that for each

J >J∗ the total instability domain now has a finite width in k, k−(J ) < k < k+(J ).
Particular instability domains on the combined (k, J )-plane mutually overlap and

at given J , several oscillations may prove to be unstable which have the same k, but
different m and various growth rates. In § 3, we have established that oscillations with
m = 0 have a maximum growth rate γ0 =O(1) whereas when m � 1 it is markedly
less, γm = O(�/m). On the other hand, numerical calculations for model flow (2.5)
show that for fixed m and k, the growth rate reaches a maximum when J is close to
the mth lower boundary, and decreases rather rapidly both downwards and upwards.
Therefore, at given J , among unstable oscillations with the same k, the maximum
growth rate does not necessarily belong to the oscillation with smaller m (even if
m = 0).

During this study, it was assumed everywhere that the medium is an ideal fluid,
and only two-dimensional (independent of the z-coordinate) perturbations were
considered. Abandoning these restrictions changes the above picture noticeably. Thus,
for example, if we take into account, even weak, dissipation, the instability domain of
the flow turns out to be markedly reduced, first of all, because only a finite number
obviously remains of the denumerable set of particular instability domains. On the
mth sheet, the maximum growth rate and characteristic vertical scale of variation of
eigenfunctions have the same order, γm ∼ lm = O(�/m), hence, the minimum m =m∗,
at which all unstable oscillations are already suppressed by dissipation, and, because
of that, the upper boundary of the total instability domain can be estimated as

m∗ = O
(
�/ν1/3

)
, J

(+)
tot ∼ J (−)

m∗ = O(m2�) = O
(
�3/ν2/3

)
,

where ν is a (dimensionless) characteristic diffusivity (of momentum, heat, salt, etc.).
By analogy, we may conclude that the instability domain should be bounded by
dissipation from the short-wavelength side, as well.

Conversely, giving up the two-dimensionality of perturbations results in an
expanded instability domain and, which is more essential, in crucial changes to
its configuration. As Squire (1933) has established, the flow stability with respect
to three-dimensional (oblique) perturbations is related to that with respect to two-
dimensional disturbances. In our case (stratified flows described in the Boussinesq
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approximation), this relation is as follows (for more detail see Smyth, Klaassen &
Peltier 1989; Smyth & Peltier 1990): the problem of evolution (with time t) of three-
dimensional perturbations with the wave vector k3 = (k cosφ, 0, k sinφ) in the flow
with Vx = u(y) and n= n(y) (see § 2) is reduced, using the transformation

t ′ = ηt, Re ′ = ηRe, J ′ = η−2J, Pr ′ = Pr; η = cosφ, (5.1)

to a problem of evolution (with time t ′) of two-dimensional perturbations with the
wave vector k2 = (k, 0, 0) in the flow with the same Vx = u(y), n= n(y) and Prandtl
number Pr , but Reynolds and bulk Richardson numbers modified in accordance
with (5.1), i.e. Re → Re ′ and J → J ′. In particular, the growth rates of three- and
two-dimensional perturbations are related by

γ (k, φ; J, Re, Pr) = η γ (k, 0; η−2J, ηRe, Pr), (5.2)

and this relation dictates the character of changes in the instability domain
configuration when we switch from two-dimensional to oblique perturbations.

According to (5.2), in the case of ideal fluid flows (Re = ∞) the mth sheet of
the (k, J )-diagram for oblique perturbations with given φ can be made from
the mth ‘two-dimensional’ sheet by contracting it η−2 times in J so that the
upper and lower boundaries of the mth instability domain are η−2 times lower
than at φ =0. In particular, the lower boundary of the total instability domain,
J = J

(−)
0 (k; φ) ≡ J

(−)
0 (k) cos2 φ, runs lower than in the case of two-dimensional

perturbations. Hence, in the class of flows under consideration, three-dimensional
perturbations are the first to lose stability when stratification reinforces, whereas
two-dimensional perturbations require greater values of the bulk Richardson number
in order to grow. Considering oblique perturbations with all possible φ, we can now
conclude that for any k > 0 and J > 0, there is at least one unstable oscillation, i.e.
that the instability domain begins immediately above the abscissa axis (as if � = 0, see
figure 1) and occupies all the (k, J )-diagram.

Figure 6 demonstrates (for the flow (2.5)) the φ-dependence of the perturbation
growth rate for k = k∗ (where J

(−)
0 (k) attains its minimum) and various values of J as

well as competition between modes with different m. Since instability thresholds for
two-dimensional disturbances with m = 0 and m > 0 are highly different (see figure
2 b), the nodeless mode is undoubtedly dominant when J � 1. If stratification is
‘subcritical’ (J <J∗, figure 6 a) a ‘cone of stability’ exists because only perturbations
with cos φ <J/J∗ are unstable. When J >J∗, the instability takes place for any φ, but
as long as the ‘supercriticality’ is weak or moderate, oblique disturbances grow faster
than two-dimensional ones (see figure 6 b, c). Only if the stratification is so strong that
d(ln γ )/d(ln J ) < 1/2 at φ =0, do two-dimensional oscillations have a higher growth
rate in comparison with oblique disturbances with the same m (figure 6 d).

It should be mentioned, however, that, because the mth instability domain has
(at φ =0) the upper boundary J = Jm(k; 1), disturbances with cosφ � J/Jm(k; 1)
belonging to the mth mode are stable (as can be seen in figure 6d–f ). Hence, as
φ is close enough to π/2, the (m + 1)th mode competes with the mth mode, the
(m + 2)th mode competes with the (m + 1)th mode, and so on. As J approaches
Jm(k; 1), the range of φ in which the (m + 1)th mode grows faster than the mth mode
becomes wider and wider and ultimately reaches φ = 0 (see figure 6 e, f ; in the flow
(2.5) J0(k∗; 1) = 1.2205). With J increasing further, the (m+1)th and (m+2)th modes
begin to compete in a wide range of φ, and so on.

Therefore, we see that in flows of the class under consideration, the primary
instability generates, as a rule, three- rather than two-dimensional disturbances and
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Figure 6. Plots of γ × 103 versus φ for nodeless (m= 0) mode at (a) J = J∗/2, (b) J =1.1 J∗,
(c) J = 2 J∗ and (d) J = 0.002 (≈ 24 J∗), and comparison of m= 0 and m= 1 modes at (e) J = 0.4
and (f) J = 0.9.

transition to turbulence does not require a two-dimensional stage and secondary
instability. Note that the possibility for three-dimensional perturbations development
due to primary instability of the stratified shear flow (of a mixing-layer type) has been
demonstrated by Smyth & Peltier (1990), but only for moderate Reynolds numbers
(Re < 500). In our case, it takes place at high Reynolds numbers, as well.
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